Steady-state regimes of a helicopter ground resonance model including a nonlinear energy sink

Baptiste Bergeot, Sergio Bellizzi et Bruno Cochelin

École Centrale de Marseille & LMA - Marseille - FRANCE

Chaire industrielle: "Dynamique des Systèmes Mécaniques Complexes"

Financé par la "Fondation AIRBUS GROUP"

Table of contents

1 Introduction and context

- 2 Simplest mathematical model for helicopter ground resonance
- **3** Prediction of the steady-state regimes of the simplified model with NES
- 4 Conclusion and perspectives

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

General context : control of "helicopter ground resonance"

Video : Destructive effects of helicopter ground resonance

◆□▶ ◆□▶ ◆ □▶ ★ □▶ □ のへぐ

General context : control of "helicopter ground resonance"

Video : Destructive effects of helicopter ground resonance

Usual means : used of linear damper

◆□ → ◆□ → ◆ 三 → ◆ 三 → の < ↔

General context : control of "helicopter ground resonance"

Video : Destructive effects of helicopter ground resonance

Usual means : used of linear damper

Means proposed : used of Nonlinear Energy Sink

(日)

Helicopter ground resonance:

- \Rightarrow Helicopter on the ground ;
- ⇒ Dynamic instability due to a frequency coalescence between a rotor mode and a fuselage mode

Helicopter ground resonance:

- \Rightarrow Helicopter on the ground ;
- ⇒ Dynamic instability due to a frequency coalescence between a rotor mode and a fuselage mode

Nonlinear Energy Sink

- ⇒ Nonlinear Energy Sink: NES
- ⇒ Oscillators with strongly nonlinear stiffness (e.g. usually purely cubic)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

-

Helicopter ground resonance:

- ⇒ Helicopter on the ground ;
- ⇒ Dynamic instability due to a frequency coalescence between a rotor mode and a fuselage mode

Nonlinear Energy Sink

- ⇒ Nonlinear Energy Sink: NES
- ⇒ Oscillators with strongly nonlinear stiffness (e.g. usually purely cubic)

⇒ Used for passive control of dynamic instabilities

・ロト ・ 西 ト ・ 回 ト ・ 日 ト

-

Helicopter ground resonance:

- ⇒ Helicopter on the ground ;
- ⇒ Dynamic instability due to a frequency coalescence between a rotor mode and a fuselage mode

Nonlinear Energy Sink

- ⇒ Nonlinear Energy Sink: NES
- ⇒ Oscillators with strongly nonlinear stiffness (e.g. usually purely cubic)

⇒ Used for passive control of dynamic instabilities

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Goal of this work:

⇒ Prediction of the steady-state regimes of a simplified model of helicopter including a NES

Table of contents

1 Introduction and context

2 Simplest mathematical model for helicopter ground resonance

3 Prediction of the steady-state regimes of the simplified model with NES

4 Conclusion and perspectives

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Table of contents

1 Introduction and context

2 Simplest mathematical model for helicopter ground resonance

3 Prediction of the steady-state regimes of the simplified model with NES

4 Conclusion and perspectives

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Ω: Angular rotor speed

Lagrange's equations

∜

Reference model

Nonlinear system with 5 unknown variables:

- Displacement of the fuselage: y
- Lagging angles: δ_1 , δ_2 , δ_3 et δ_4

Ω: Angular rotor speed

Ω: Angular rotor speed

Lagrange's equations

∜

Reference model

Nonlinear system with 5 unknown variables:

- Displacement of the fuselage: y
- Lagging angles: δ₁, δ₂, δ₃ et δ₄

↓ Linearization

∜

Linear system with 5 unknown variables, with time variable parameters $(2\pi/\Omega$ -periodic)

Ω: Angular rotor speed

Center of inertia of the rotor

Lagrange's equations

∜

Reference model

Nonlinear system with 5 unknown variables:

- Displacement of the fuselage: y
- **Lagging angles:** δ_1 , δ_2 , δ_3 et δ_4

↓ Linearization

∜

Linear system with 5 unknown variables, with time variable parameters $(2\pi/\Omega$ -periodic)

↓

Coleman transformation

∜

Linear system with 3 unknown variables, with constant parameters

Coleman Transformation:

Change of variable $\underbrace{\{\delta_0; \, \delta_{1c}; \, \delta_{1s}; \, \delta_{cp}\}}_{\text{Coleman variables: collective motion of the blades}}$ $\{\delta_1; \delta_2; \delta_3; \delta_4\}$ \implies Lagging angles: individual motion of the blades

◆□▶ ◆□▶ ◆ □▶ ★ □▶ □ のへぐ

Coleman Transformation:

Equation of motion of δ_0 et δ_{cp} uncoupled

∜

Linear system with 3 unknown variables:

- Displacement of the fuselage: y ;
- 2 Coleman variables: δ_{1c} and δ_{1s},

with constant parameters

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Coleman Transformation:

Linear system with 3 unknown variables:

- Displacement of the fuselage: y ;
- 2 Coleman variables: δ_{1c} and δ_{1s},

with constant parameters

Standard form of the system

$$\dot{\mathbf{X}} = \mathbf{A}(\Omega)\mathbf{X},$$
 with

$$\mathbf{X} = \{y, \dot{y}, \delta_{1c}, \dot{\delta}_{1c}, \delta_{1s}, \dot{\delta}_{1s}\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

 Ω (rotor speed): bifurcation parameter

 ω_y : natural frequency of the fuselage ω_δ : natural frequency of one blade

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\dot{\mathbf{X}} = \mathbf{A}(\Omega)\mathbf{X} \implies$

α : eigenvalues of **A**(Ω)

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ のへで

 $\dot{\mathbf{X}} = \mathbf{A}(\Omega)\mathbf{X} \implies$

α : eigenvalues of **A**(Ω)

No interaction between the fuselage mode and the progressive rotor mode

 $\mathcal{O} \land \mathcal{O}$

Simplest model: how to ignore PROGRESSIVE rotor mode ?

Answer: use of "bi-normal" transformation

[Done, "A simplified approach to helicopter ground resonance", Aeronaut. J., 1974.]

Simplest model: how to ignore PROGRESSIVE rotor mode ?

Answer: use of "bi-normal" transformation

[Done, "A simplified approach to helicopter ground resonance", Aeronaut. J., 1974.]

"Bi-normal" transformation only for rotor coordinates (i.e. Coleman variables and their derivatives):

 $\{q_1, q_1^*, q_2, q_2^*\} \in \mathbb{C}$

q₁, q₁^{*}: regressive rotor mode
 q₂, q₂^{*}: progressive rotor mode IGNORED

◆□ ▶ ◆酉 ▶ ◆臣 ▶ ◆臣 ● ○ ○ ○ ○

Simplest model: how to ignore PROGRESSIVE rotor mode?

Answer: use of "bi-normal" transformation

[Done, "A simplified approach to helicopter ground resonance", Aeronaut. J., 1974.]

"Bi-normal" transformation only for rotor coordinates (i.e. Coleman variables and their derivatives):

Change of variable

$$\underbrace{\{\delta_{1c}, \dot{\delta}_{1c}, \delta_{1s}, \dot{\delta}_{1s}\}}_{\text{Rotor coordinates}} \implies \underbrace{\{q_1, q_1^*, q_2, q_2^*\}}_{\text{Bi-normal coordinates}}$$

 $\{q_1, q_1^*, q_2, q_2^*\} \in \mathbb{C}$

 q_1, q_1^* : regressive rotor mode q_2, q_2^* : progressive rotor mode **IGNORED**

 $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ with $\mathbf{X} = \{ \mathbf{y}, \dot{\mathbf{y}}, \delta_{1c}, \dot{\delta}_{1c}, \delta_{1s}, \dot{\delta}_{1s} \}$ 1 Use of "bi-normal" coordinates + q_2, q_2^* ignored ∜

Simplified system

 $\dot{\mathbf{Y}} = \mathbf{B}\mathbf{Y}$

with **Y** = { y, \dot{y}, q_1, q_1^* }

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Table of contents

1 Introduction and context

2 Simplest mathematical model for helicopter ground resonance

12 / 24

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

3 Prediction of the steady-state regimes of the simplified model with NES

4 Conclusion and perspectives

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

"Ungrounded" NES on the fuselage

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

"Ungrounded" NES on the fuselage

"Ungrounded" NES on the fuselage

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

Identification of the steady-state regimes

Numerical simulation: Reference model vs. Simplified model with NES

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

⇒ Goal of this work:

Prediction of the steady-state regimes of the Simplified model with NES

◆□▶ ◆□▶ ◆ □▶ ★ □▶ □ のへぐ

⇒ Goal of this work:

Prediction of the steady-state regimes of the Simplified model with NES

⇒ Assumptions:

- The mass of the NES is small with respect to the total mass of the fuselage and the blades: $\frac{m_h}{m_y + 4m_\delta} = \epsilon \ll 1$
- Most of the parameters are $O(\epsilon)$
- Initial conditions not too far from 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

\Rightarrow Goal of this work:

Prediction of the steady-state regimes of the Simplified model with NES

Assumptions: \Rightarrow

The mass of the NES is small with respect to the total mass of the fuselage and the blades: $\frac{1}{m_y + 4m_{\delta}} = \epsilon \ll 1$

- Most of the parameters are $O(\epsilon)$
- Initial conditions not too far from **0**

⇒ Parametric analysis :

- Rotor speed Ω through the parameter *a* defined as $\Omega = \omega_v + \omega_\delta + a\epsilon$, with $a \sim O(1)$
- Damping coefficient of one blade: $\lambda_{\delta} = \lambda_{\delta}/\epsilon$, with $\lambda_{\delta} \sim O(1)$

・ロト ・ 一下・ ・ ヨト

⇒ Goal of this work:

Prediction of the steady-state regimes of the Simplified model with NES

Assumptions: \Rightarrow

The mass of the NES is small with respect to the total mass of the fuselage and the blades: $\frac{m_y}{m_y + 4m_{\delta}} = \epsilon \ll 1$

- Most of the parameters are $O(\epsilon)$
- Initial conditions not too far from **0**

⇒ Parametric analysis :

- Rotor speed Ω through the parameter *a* defined as $\Omega = \omega_v + \omega_\delta + a\epsilon$, with $a \sim O(1)$
- Damping coefficient of one blade: $\lambda_{\delta} = \tilde{\lambda}_{\delta}/\epsilon$, with $\lambda_{\delta} \sim O(1)$

Presentation of the results :

Domain of existence of the steady-state regimes in a plane { a, λ_{δ} }: we count 5 domains for 4 regimes

Domain 1: domain of existence "complete suppression"

 \equiv domain of local stability of the trivial equilibrium (TE) position of the simplified model with NES $\dot{Z}=f_{Z}(Z)$

 \Rightarrow Eigenvalues of $\mathbf{J}_{\mathbf{f}_{\mathbf{Z}}}(\mathbf{0}) \beta_i \ (i = 1, ..., 6)$

 $\Rightarrow \beta(a, \lambda_{\delta})$: eigenvalue of $\mathbf{J}_{\mathbf{f}}(\mathbf{0})$ which can satisfy $\operatorname{Re}[\beta(a, \lambda_{\delta})] > 0$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Domain 1: domain of existence "complete suppression"

 \equiv domain of local stability of the trivial equilibrium (TE) position of the simplified model with NES $\dot{Z}=f_{Z}(Z)$

- \Rightarrow Eigenvalues of $\mathbf{J}_{\mathbf{f_Z}}(\mathbf{0}) \ \beta_i \ (i = 1, ..., 6)$
- $\Rightarrow \beta(a, \lambda_{\delta})$: eigenvalue of $\mathbf{J}_{\mathbf{f}}(\mathbf{0})$ which can satisfy $\operatorname{Re}[\beta(a, \lambda_{\delta})] > 0$

Domain 1 defined by $\lambda_{\delta,b}(a)$ **solution of Re** $[\beta(a, \lambda_{\delta}(a))] = 0$

Domains of existence of PR, SMR and "No suppression":

⇒ Complexification-Averaging Method

[Manevitch, "Complex Representation of Dynamics of Coupled Nonlinear Oscillators", 1999.]

Change of variable:

$$\phi_1 = \left(\dot{v} + j\omega_y v\right) e^{-j\omega_y t}; \qquad \phi_2 = \left(\dot{w} + j\omega_y w\right) e^{-j\omega_y t}; \qquad \phi_3 = q_1 e^{-j\omega_y t}$$

• Averaging over one period of the frequency ω_{γ} :

 $\dot{\phi}=\mathbf{f}_{\phi}\left(\phi
ight)$, with $\phi=\left\{\phi_{1},\phi_{2},\phi_{3}
ight\}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ
Domains of existence of PR, SMR and "No suppression":

⇒ Complexification-Averaging Method

[Manevitch, "Complex Representation of Dynamics of Coupled Nonlinear Oscillators", 1999.]

Change of variable:

$$\phi_1 = \left(\dot{v} + j\omega_y v\right) e^{-j\omega_y t}; \qquad \phi_2 = \left(\dot{w} + j\omega_y w\right) e^{-j\omega_y t}; \qquad \phi_3 = q_1 e^{-j\omega_y t}$$

• Averaging over one period of the frequency ω_{γ} :

$$\dot{\phi} = \mathbf{f}_{\phi}(\phi)$$
, with $\phi = \{\phi_1, \phi_2, \phi_3\}$

Real system

Complex system

 $\dot{\phi} = \mathbf{f}_{\phi}(\phi)$ with $\phi = \{\phi_1, \phi_2, \phi_3\}$ Polar coordinates.: $\phi_i(t) = N_i(t)e^{j\theta_i(t)}$ $\dot{\mathbf{U}} = \mathbf{f}_{\mathbf{U}}(\mathbf{U})$ with $\mathbf{U} = \{N_1, N_2, N_3, \Delta_{21}, \Delta_{31}\},$ $\Delta_{21} = \theta_2 - \theta_1$, and $\Delta_{31} = \theta_3 - \theta_1$ \Rightarrow Fixed points \equiv PR of $\dot{\mathbf{Z}} = \mathbf{f}_{\mathbf{Z}}(\mathbf{Z})$ \Rightarrow Oscillating solutions \equiv SMR of $\dot{\mathbf{Z}} = \mathbf{f}_{\mathbf{Z}}(\mathbf{Z})$ 17 / 24

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Domains of existence of PR, SMR and "No suppression":

⇒ Complexification-Averaging Method

[Manevitch, "Complex Representation of Dynamics of Coupled Nonlinear Oscillators", 1999.]

Change of variable:

$$\phi_1 = \left(\dot{v} + j\omega_y v\right) e^{-j\omega_y t} ; \qquad \phi_2 = \left(\dot{w} + j\omega_y w\right) e^{-j\omega_y t} ; \qquad \phi_3 = q_1 e^{-j\omega_y t} ;$$

• Averaging over one period of the frequency ω_{γ} :

$$\dot{\phi} = \mathbf{f}_{\phi}(\phi)$$
, with $\phi = \{\phi_1, \phi_2, \phi_3\}$

Real system

Complex system

 $\dot{\phi} = \mathbf{f}_{\phi}(\phi)$ with $\phi = \{\phi_1, \phi_2, \phi_3\}$ Polar coordinates.: $\phi_i(t) = N_i(t)e^{j\theta_i(t)}$ $\dot{\mathbf{U}} = \mathbf{f}_{\mathbf{U}}(\mathbf{U})$ with $\mathbf{U} = \{N_1, N_2, N_3, \Delta_{21}, \Delta_{31}\},$ $\Delta_{21} = \theta_2 - \theta_1$, and $\Delta_{31} = \theta_3 - \theta_1$ \Rightarrow Fixed points \equiv PR of $\dot{\mathbf{Z}} = \mathbf{f}_{\mathbf{Z}}(\mathbf{Z})$ \Rightarrow Oscillating solutions \equiv SMR of $\dot{\mathbf{Z}} = \mathbf{f}_{\mathbf{Z}}(\mathbf{Z})$

Studied using multi-scale approach since $\epsilon \ll 1$: \rightarrow fast time: $t_0 = t$

 \rightarrow slow time: $t_1 = \epsilon t$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$\epsilon^{\rm 0}$ order of the system

$$\frac{\partial N_1}{\partial t_0} = \frac{\partial N_3}{\partial t_0} = \frac{\partial \Delta_{31}}{\partial t_0} = 0$$

$$\begin{cases} \frac{\partial N_2}{\partial t_0} = \frac{\omega_y}{2} \left(N_1 \sin \Delta_{21} + N_2 \ln [F(N_2)] \right) \\ \frac{\partial \Delta_{21}}{\partial t_0} = \frac{\omega_y}{2} \left(\frac{N_1}{N_2} \cos \Delta_{21} - \operatorname{Re} [F(N_2)] \right) \end{cases}$$

 \Rightarrow Fixed points of the ϵ^0 order system:

$$\lim_{t_0 \to \infty} \frac{\partial N_2}{\partial t_0} = 0 \text{ and } \lim_{t_0 \to \infty} \frac{\partial \Delta_{21}}{\partial t_0} = 0$$

 \Rightarrow t₀-invariant manifold (t₀-IM):

$$\begin{split} \phi_1(t_1) &= \phi_2(t_1) F\left(|\phi_2(t_1)| \right) \\ &\downarrow \\ N_1^2 &= N_2^2 |F(N_2)|^2 = H(N_2). \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Shape and stability of the t₀-IM

⇒ Explanation of the 3 steady-state regimes

 ϵ^1 order of the system in the limit $t_0 \to \infty$: $\Phi_1(t_1) = \Phi_2(t_1)F(|\Phi_2(t_1)|)$

 \Rightarrow Fixed points of ϵ^1 order system

0, 1 or 2 = fixed points of full order averaged syst. =
$$PR$$
 for the Simplified model
 $\dot{U}=f_U(U)$ $\dot{Z}=f_Z(Z)$

- \Rightarrow Definition of the domains of existence of PR, SMR and "No suppression":
 - Local stability of the fixed points
 - Position of N_2^e with respect to $N_{2,M}$, $N_{2,m}$, $N_{2,d}$, $N_{2,u}$

<u>**Definition**</u>: one of the fixed points is stable & $N_2^e < N_{2,M}$

stable fixed pointunstable fixed point

(ロ)、(型)、(E)、(E)、 E) のQ(()

<u>**Definition**</u>: one of the fixed points is stable & $N_2^e < N_{2,M}$

Domain 3: PR or SMR

<u>Definition</u>: one of the fixed points is stable & $N_2^e > N_{2,m}$

- stable fixed point
- unstable fixed point

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

<u>Definition</u>: one of the fixed points is stable & $N_2^e < N_{2,M}$

Domain 3: PR or SMR

<u>Definition</u>: one of the fixed points is stable & $N_2^e > N_{2,m}$

Domain 4: SMR

Definition:

- \rightarrow 1 unstable fixed point
- \rightarrow 2 unstable fixed points & for

the largest one: $N_2^e > N_{2,u}$

unstable fixed point

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

<u>Definition</u>: one of the fixed points is stable & $N_2^e < N_{2,M}$

Domain 3: PR or SMR

<u>Definition</u>: one of the fixed points is stable & $N_2^e > N_{2,m}$

Domain 4: SMR

Definition:

- \rightarrow 1 unstable fixed point
- \rightarrow 2 unstable fixed points & for

the largest one: $N_2^e > N_{2,u}$

stable fixed pointunstable fixed point

Domain 5: "no suppression"

Definition:

- \rightarrow No fixed points
- \rightarrow 2 unstable fixed points & for

both of them:

 $N_{2,M} < N_2^e < N_{2,u}$

(日)

ж

(ロ)、(型)、(E)、(E)、 E) のQ(()

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Table of contents

1 Introduction and context

2 Simplest mathematical model for helicopter ground resonance

22 / 24

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- **3** Prediction of the steady-state regimes of the simplified model with NES
- 4 Conclusion and perspectives

⇒ Numerical/Analytical study of a simplified helicopter ground resonance model coupled to a NES

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ⇒ Numerical/Analytical study of a simplified helicopter ground resonance model coupled to a NES
- ⇒ Four steady-state response regimes:
 - Complete suppression
 - Partial suppression: PR
 - Partial suppression: SMR
 - No suppression

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- ⇒ Numerical/Analytical study of a simplified helicopter ground resonance model coupled to a NES
- ⇒ Four steady-state response regimes:
 - Complete suppression
 - Partial suppression: PR
 - Partial suppression: SMR
 - No suppression
- ⇒ Prediction of the domains of existence of the steady-state response regimes: <u>5 domains</u> for 4 regimes

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- ⇒ Numerical/Analytical study of a simplified helicopter ground resonance model coupled to a NES
- ⇒ Four steady-state response regimes:
 - Complete suppression
 - Partial suppression: PR
 - Partial suppression: SMR
 - No suppression
- ⇒ Prediction of the domains of existence of the steady-state response regimes: <u>5 domains</u> for 4 regimes
- \Rightarrow Analytical/Numerical study:
 - Influence of the others parameters (e.g. NES parameters)
 - Assumptions compatible with industrial applications

Perspectives

 \Rightarrow Present configuration: design of a NES

◆□▶ ◆□▶ ◆ □▶ ★ □▶ □ のへぐ

Perspectives

- \Rightarrow Present configuration: design of a NES
- \Rightarrow Investigation on other configurations:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank you for your attention

⇒ Email: baptiste.bergeot@centrale-marseille.fr

Van Der Pol oscillator

[Lee et al., "Suppression of limit cycle oscillations in the Van der Pol oscillator by means of passive non-linear energy sinks", *Struct. Control Health Monit.*, 2006.]

[Gendelman et Bar, "Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink", *Physica D*, 2010.]

[Damony et Gendelman, "Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink", *J. Sound Vib.*, 2013.]

Flutter instabilities

[Lee et al., "Suppression Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers, Part 1: Theory", *AIAA Journal*, 2007.]

[Gendelman et al., "Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow", SIAM J Appl. Math., 2010.]

Harmonic forced linear system

[Starosvetsky and Gendelman, "Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry", *Physica D*, 2007.]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

 ϵ^1 order of the system in the limit $t_0 \to \infty$: $\Phi_1(t_1) = \Phi_2(t_1)F(|\Phi_2(t_1)|)$

$$\begin{cases} H'(N_2) \frac{\partial N_2}{\partial t_1} = f_{N_2}(N_2, N_3, \Delta_{32}) \\ H'(N_2) \frac{\partial \Delta_{32}}{\partial t_1} = f_{\Delta_{32}}(N_2, N_3, \Delta_{32}) & \text{with,} & \Delta_{32} = \Theta_3 - \Theta_2 \\ \frac{\partial N_3}{\partial t_1} = f_{N_3}(N_2, N_3, \Delta_{32}) \end{cases}$$

 $\Rightarrow \text{ Fixed points } \{N_2^e, N_3^e, \Delta_{32}^e\} \text{ of the } \epsilon^1 \text{ order system: solution of } \begin{cases} f_{N_2} = 0\\ f_{\Delta_{32}} = 0\\ f_{N_3} = 0 \end{cases}$

0, 1 or 2 fixed points:

$$\{N_2^e, N_3^e, \Delta_{32}^e\} \equiv \underbrace{\text{fixed points of full order averaged syst.}}_{\dot{U}=f_U(U)} \equiv \underbrace{\frac{PR \text{ for the Simplified model}}{\dot{Z}=f_Z(Z)}}_{\dot{Z}=f_Z(Z)}$$

 \Rightarrow Definition of the domains of existence of PR, SMR and "No suppression":

- Local stability of the fixed point $\{N_2^e, N_3^e, \Delta_{32}^e\}$
- Position of N^e₂ with respect to N_{2,M}, N_{2,m}, N_{2,d}, N_{2,u}
- 4 domains for 3 regimes

4 domains for 3 regimes:

Domain 2: PR

- Domain 3: PR or SMR
- Domain 4: SMR
- Domain 5: No suppression

- Domain 3: PR or SMR
- Domain 4: SMR
- Domain 5: No suppression

Full Order Average Model:

$$\dot{\phi}=\mathbf{f}_{\phi}\left(\phi
ight)$$
 with $\phi=\left\{\phi_{1},\phi_{2},\phi_{3}
ight\}$

 ϵ^1 Order Average Model:

$$\begin{cases} H'(N_2) \frac{\partial N_2}{\partial t_1} = f_{N_2}(N_2, N_3, \Delta_{32}) \\ H'(N_2) \frac{\partial \Delta_{32}}{\partial t_1} = f_{\Delta_{32}}(N_2, N_3, \Delta_{32}) \\ \frac{\partial N_3}{\partial t_1} = f_{N_3}(N_2, N_3, \Delta_{32}) \end{cases}$$

Simplified Model With NES:

$$\dot{Z} = f_{Z}(Z, \Omega)$$

with
$$\mathbf{Z} = \{v, \dot{v}, w, \dot{w}, q_1, q_1^*\}$$

▲ロト ▲御ト ▲ヨト ▲ヨト 三目 - のへで

Example 1

200

Example 1 aanadaaanaandaaaadaaaadaaaaaaa 0.2 (iii) 0.5 0.0 0.4 -0.2 Studied system (Eq. (31)) ≳° 0.3 √° Number Contraction of the second s -0.3 Slow-flow averaged system 500 1000 1500 ź 0.2 ananananananananananananananana 0.4 w(t), |\$2(t)| (m) 0.2 0.1 0.0 0.0 -0.2 2000 2500 3000 500 1000 1500 3500 -0.4 1.2 500 1000 2000 Numerical Analytical (SIM 0.15 1.0 Ê 0.14 € 0.13 0.8 ± €^{0.12} ₹ 0.6 ±0.11 0.10 0.4 (N_{2M}, N_{1M}) 1000 1500 2000 t (s) $(N_{2,u}, N_{1,M})$ 0.2 (N_{2,d},N_{1,m}) Simplified model with NES $(N_{2,m}, N_{1,m})$ Full-order averaged model 0.8 0.2 1.2

 N_2

(日) (四) (三) (三) - E

3000 3500

3500

▲ロト ▲御ト ▲ヨト ▲ヨト 三目 - のへで

10000

10 000

Domain 4: domain of existence "partial suppression through SMR"

Definition:

- \rightarrow 1 unstable fixed point (example 3)
- \rightarrow 2 unstable fixed points & for the largest one $N_2^e > N_{2,u}$

▲ロト ▲御ト ▲ヨト ▲ヨト 三目 - のへで

Domain 4: domain of existence "partial suppression through SMR"

Definition:

- \rightarrow 1 unstable fixed point (example 3)
- \rightarrow 2 unstable fixed points & for the largest one $N_2^e > N_{2,u}$

Domain 4: domain of existence "partial suppression through SMR"

Definition:

- \rightarrow 1 unstable fixed point (example 3)
- \rightarrow 2 unstable fixed points & for the largest one $N_2^e > N_{2,u}$

Example 3

Domain 5: domain of existence "no suppression"

Definition:

- \rightarrow No fixed points (example 4)
- \rightarrow 2 unstable fixed points & for both of them $N_{2,M} < N_2^e < N_{2,u}$

▲ロト ▲御ト ▲ヨト ▲ヨト 三目 - のへで

Domain 5: domain of existence "no suppression"

Definition:

- \rightarrow No fixed points (example 4)
- \rightarrow 2 unstable fixed points & for both of them $N_{2,M} < N_2^e < N_{2,u}$

Domain 5: domain of existence "no suppression"

Definition:

- \rightarrow No fixed points (example 4)
- \rightarrow 2 unstable fixed points & for both of them $N_{2,M} < N_2^e < N_{2,u}$

