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Ceneral context : control of "helicopter ground resonance"

Video : Destructive effects of helicopter ground resonance

: used of linear damper

Means proposed : used of Nonlinear Energy Sink
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Helicopter ground resonance Nonlinear Energy Sink

= Nonlinear Energy Sink:

= Oscillators with strongly
nonlinear stiffness (e.g. usually
purely cubic)

GROUND

= Used for passive control of
dynamic instabilities

= Helicopter on the ground ;

= Dynamic instability due to a frequency
coalescence between a rotor mode and a
fuselage mode

Goal of this work:

= Prediction of the steady-state regimes of a simplified model of helicopter
including a NES
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Blade
Fuselage i}

Reference model

Nonlinear system with 5 unknown variables:

m Displacement of the fuselage: y

m Lagging angles: 01, 02, 03 et 04

4

4

Linear system with 5 unknown variables,
with time variable parameters
(271/Q-periodic)

Lagging
i angle
Center of inertia Linear system with 3 unknown variables,

of the rotor with constant parameters

[Krysinski et Malburet, "Instabilité mécanique: contréle actif et passif', chapitre 2,
Lavoisier, 2009.]
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Simplest mathematical model for helicopter gr.

Coleman Transformation:

Change of variable

{01; 02; 03 64} = {00; 01¢; O15; Ocp}
~———— —_———
Lagging angles: individual motion of the blades Coleman variables: collective motion of the blades

Equation of motion of dg et dp uncoupled

A

Linear system with 3 unknown variables:

m Displacement of the fuselage: y ;

m 2 Coleman variables: 01 and 01s,

with constant parameters

Standard form of the system

X = AQ)X, with X = {y, ¥, 01c, 61c, 015, 015}

Q (rotor speed): bifurcation parameter
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X =A(Q)X = a: eigenvalues of A(Q)
10 :
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| | rotor mode
Regressive : :
rotor mode
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2 3 4
Rotor Speed Q
wy: natural frequency of the fuselage
ws: natural frequency of one blade
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No interaction between the fuselage mode and the progressive rotor mode
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Simplest mathematical model for helicopter gr. res.

Simplest model: how to ignore PROGRESSIVE rotor mode ?
Answer: use of "bi-normal" transformation
[Done, "A simplified approach to helicopter ground resonance', Aeronaut. J., 1974.]

. . Whole system: Fuselage + Rotor
"Bi-normal" transformation only for

rotor coordinates (i.e. Coleman

variables and their derivatives): X =AX

with X = {y, ¥, d1¢, 61, 015, 015}
Change of variable

4

{01c, 61c, 015, 615} = {q1. 4%, 92, @3}

Rotor coordinates Bi-normal coordinates

4

Simplified system
g1, qj: regressive rotor mode

G2, G5: progressive rotor mode IGNORED Y = BY

{a1. 45, q2. 43} €C

with Y = {y, v, q1, q{}
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Simplified model wit Use of
tmplified model without barycentric Simplified model with NES:
NES: o
coordinates: . )
1 Aoears Nonlinear
Y =BY = and = Z=1(2)

. _ . . "
with Y = {y, 7. q1, 41} with Z = {v, v, w, w, q1, g} }
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|dentification of the steady-state regimes
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= Goal of this work:
Prediction of the steady-state regimes of the
Simplified model with NES

= Assumptions:

Im[a]

B The mass of the NES is small with respect to
the total mass of the fuselage and the blades:
L —e K 1
my +4ms

B Most of the parameters are O(e)

® Initial conditions not too far from 0
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= Parametric analysis :
B Rotor speed Q through the parameter a defined
as 0 = wy + ws + ae, with a ~ O(1)
m Damping coefficient of one blade: A5 = As/e, _0_02i ,,,,,,,,,,,,
with A5 ~ O(1) ’
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= Goal of this work:
Prediction of the steady-state regimes of the
Simplified model with NES

= Assumptions:

Im[a]

B The mass of the NES is small with respect to
the total mass of the fuselage and the blades:
L —e K 1
my +4ms

B Most of the parameters are O(e)

® Initial conditions not too far from 0

0.01 |

= Parametric analysis :
B Rotor speed Q through the parameter a defined
as 0 = wy + ws + ae, with a ~ O(1)
m Damping coefficient of one blade: A5 = As/e, _0_02i ,,,,,,,,,,,,
with A5 ~ O(1) ’

888888868
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= Presentation of the results : 238 9 3.0 37 3.2

Domain of existence of the steady-state regimes in a Rotor Speed 0
plane {a, As}:
we count for
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Domain 1: domain of existence "complete suppression"

= domain of local stability of the trivial equilibrium (TE) position of the simplified model
with NES Z = fz(Z)

= Eigenvalues of Jg,(0) Bi (i = 1,...,6)

= B(a, As): eigenvalue of J¢(0) which can satisfy Re[B(a, A5)] > 0
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Domain 1: domain of existence "complete suppression"

= domain of local stability of the trivial equilibrium (TE) position of the simplified model
with NES Z = fz(2)

= Eigenvalues of Jg,(0) Bi (i = 1,...,6)
= B(a, As): eigenvalue of J¢(0) which can satisfy Re[B(a, A5)] > 0

1.2 ' ' '
TE stable: Domain 1
1.0
0.8
a TE unstable
506
PR
0.4 or
SMR
or
0.2 No suppression ?
0.0

-15 -1.0 -0.5 0.0 0.5 1.0 15
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= Complexification-Averaging Method

[Manevitch, "Complex Representation of Dynamics of Coupled Nonlinear Oscillators', 1999.]
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= Averaging over one period of the frequency wy:

o ="Ffy(¢), with o= {1, 2 ¢3}
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= Complexification-Averaging Method

[Manevitch, "Complex Representation of Dynamics of Coupled Nonlinear Oscillators', 1999.]
m Change of variable:
o —jwyt . ; ; —jwyt . —jwyt
1= (V+jwyv) e gy = (W+jwyw) e g3 =qre
= Averaging over one period of the frequency wy:

o ="Ffy(¢), with o= {1, 2 ¢3}

Real system

Polar coordinates.: ¢;(t) = Nj(t)el®(®)

Complex system

U =fy(U)
¢ =fy () with U = {Ny, Np, N3, Agy, Az },
with ¢ = {¢1, ¢, 3} A1 =6, — 61, and Az = 63 — 6
= Fixed points = of Z = fz(Z)

= Oscillating solutions = of Z = f2(Z)
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= Complexification-Averaging Method

[Manevitch, "Complex Representation of Dynamics of Coupled Nonlinear Oscillators', 1999.]

m Change of variable:

o1 = (\'/ +jwyv)e7j“’yt; b2 = (W +jwyw) e ot ¢3 = qre It

= Averaging over one period of the frequency wy:

o ="Ffy(¢), with o= {1, 2 ¢3}

Polar coordinates.: ¢;(t) = Nj(t)el®(®)

Complex system .
U = fy(U)

¢ =fy () with U = {Ny, Np, N3, Agy, Az },
with ¢ = {¢1, ¢, 3} A1 =6, — 61, and Az = 63 — 6
= Fixed points = of Z = fz(Z) )
= Oscillating solutions = of Z =fz(2)

= Studied using multi-scale approach since € « 1:
— fast time: tp =t
— slow time: t; = et



Prediction of the steady-state regimes

Stable

==== Unstable

(NN, m)

(No,N1w)

Nz, N1, )

05
oNy _oms _ ony _
dty - dty - dty - o4
N goe
22 _ O (N sin oy + Nolm [F(N,)]) E
atO 2 02
lo
0A21 _ Wy N1
B0~ 2 \ N, cos Ao — Re[F(Ny)] o
0.0!

= Fixed points of the €® order system:

01

. 0N, .
lim —= =0and lim —— =
to—oo dtg to—oo  dty

0.4}

= tp-invariant manifold (tp-IM):

VH(N)

P1(t1) = da(t1)F (|p2(ta)]) o2y

4

0.0

N3 = N3|F (N2) [> = H(N,).




Prediction of the steady-state regimes

Shape and stability of the to-IM

= Explanation of the 3
steady-state regimes
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0.4

Shape and stability of the to-IM
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==== Unstable

(N2,urN1 ,M)

= Explanation of the 3 102
. (N2,0,N1,m)
steady-state regimes
0.1
00 0.0 05 1.0
Nz
in the limit tg — oo: P1(t1) = Po(t1)F (|Pa(t1)])

= Fixed points of €' order system

0, 1 or 2 = fixed points of full order averaged syst.

= PR for the Simplified model

U=fy(V)

2=fz(2)

= Definition of the domains of existence of PR, SMR and "No suppression":

m Local stability of the fixed points

m Position of NS with respect to No p1, No,m,

No,g, N,y
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Domain 2: PR

Definition: one of the fixed
points is stable & NS < N i
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Domain 2: PR

Definition: one of the fixed
points is stable & NS < N i
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5 domains for 4 regimes:
Domain 1: Complete suppression

Domain 2: PR

Domain 4: SMR

Domain 5: No suppression

As

0.8

D Domain 1
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® e e Domain 4
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Conclusion and perspectives

Conclusion

= Numerical/Analytical study of a simplified helicopter ground
resonance model coupled to a NES

= Four steady-state response regimes:

m Complete suppression
Partial suppression: PR
Partial suppression: SMR
No suppression

= Prediction of the domains of existence of the steady-state
response regimes: 5 domains for 4 regimes

= Analytical/Numerical study:

m Influence of the others parameters (e.g. NES parameters)
m Assumptions compatible with industrial applications
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Perspectives

= Present configuration: design of a NES

= Investigation on other configurations:

Present . - »
work Engine »  Rotor » Fuselage
—_—
ENERGY
—_—
Future . _ |
work Engine » Rotor » Fuselage




Thank you for your attention

= Email: baptiste.bergeot@centrale-marseille.fr
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4 domains for 3 regimes:

Domain 2: PR
Domain 3: PR or SMR
Domain 4: SMR

Domain 5: No suppression
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: domain of existence "partial suppression through PR"

Definition: one of the fixed points is stable & N§ < N,
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: domain of existence "partial suppression through PR"

Definition: one of the fixed points is stable & N5 < N,

Example 1
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Domain 2: domain of existence "partial suppression through PR"

Definition: one of the fixed points is stable & N5 < N,
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: domain of existence "partial suppression through PR or SMR"

Definition: one of the fixed points is stable & N§ > N, ,
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: domain of existence "partial suppression through PR or SMR"

Definition: one of the fixed points is stable & N5 > N,

Example 2a: sustained PR
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Domain 3: domain of existence "partial suppression through PR or SMR"

Definition: one of the fixed points is stable & N5 > N,

Example 2a: sustained PR
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Domain 3: domain of existence "partial suppression through PR or SMR"

Definition: one of the fixed points is stable & N§ > N, ,

Example 2a: sustained SMR
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Domain 3: domain of existence "partial suppression through PR or SMR"

Definition: one of the fixed points is stable & N5 > N,
e “”‘

Example 2a: sustained SMR
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: domain of existence "partial suppression through SMR"

Definition:
— 1 unstable fixed point (example 3)
— 2 unstable fixed points & for the largest one N5 > N,
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domain of existence "partial suppression through SMR"

Definition:
— 1 unstable fixed point (example 3)
— 2 unstable fixed points & for the largest one N§ > Ny,
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Domain 4: domain of existence "partial suppression through SMR"

Definition:
— 1 unstable fixed point (example 3)
— 2 unstable fixed points & for the largest one N§ > Ny,
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: domain of existence "no suppression"

Definition:
— No fixed points (example 4)
— 2 unstable fixed points & for both of them Ny < NS < Np
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: domain of existence "no suppression"

Definition:
— No fixed points (example 4)
— 2 unstable fixed points & for both of them Ny < NS < Na
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Domain 5: domain of existence "'no suppression"

Definition:
— No fixed points (example 4)
— 2 unstable fixed points & for both of them Ny < NS < Na
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