Steady-state regimes of a helicopter ground resonance model including a nonlinear energy sink

Baptiste Bergeot, Sergio Bellizzi et Bruno Cochelin
École Centrale de Marseille \&I LMA - Marseille - FRANCE

Chaire industrielle: "Dynamique des Systèmes Mécaniques Complexes"

Financé par la "Fondation AIRBUS Giroup"

Cirs
\qquad

Table of contents

1 Introduction and context
2 Simplest mathematical model for helicopter ground resonance
3 Prediction of the steady-state regimes of the simplified model with NES

4 Conclusion and perspectives

General context : control of "helicopter ground resonance"

Video : Destructive effects of helicopter ground resonance

General context : control of "helicopter ground resonance"

Video : Destructive effects of helicopter ground resonance

Usual means : used of linear damper

General context : control of "helicopter ground resonance"

Video : Destructive effects of helicopter ground resonance

Usual means : used of linear damper
Means proposed : used of Nonlinear Energy Sink

Helicopter ground resonance

Helicopter ground resonance:
\Rightarrow Helicopter on the ground ;
\Rightarrow Dynamic instability due to a frequency coalescence between a rotor mode and a fuselage mode

Helicopter ground resonance

Helicopter ground resonance:

\Rightarrow Helicopter on the ground ;
\Rightarrow Dynamic instability due to a frequency coalescence between a rotor mode and a fuselage mode

Nonlinear Energy Sink

\Rightarrow Nonlinear Energy Sink: NES
\Rightarrow Oscillators with strongly nonlinear stiffness (e.g. usually purely cubic)

Helicopter ground resonance

Helicopter ground resonance:

\Rightarrow Helicopter on the ground ;
\Rightarrow Dynamic instability due to a frequency coalescence between a rotor mode and a fuselage mode

Nonlinear Energy Sink

\Rightarrow Nonlinear Energy Sink: NES
\Rightarrow Oscillators with strongly nonlinear stiffness (e.g. usually purely cubic)
\Rightarrow Used for passive control of dynamic instabilities

Helicopter ground resonance

Helicopter ground resonance:
\Rightarrow Helicopter on the ground ;
\Rightarrow Dynamic instability due to a frequency coalescence between a rotor mode and a fuselage mode

Nonlinear Energy Sink

\Rightarrow Nonlinear Energy Sink: NES
\Rightarrow Oscillators with strongly nonlinear stiffness (e.g. usually purely cubic)
\Rightarrow Used for passive control of dynamic instabilities

Goal of this work:

\Rightarrow Prediction of the steady-state regimes of a simplified model of helicopter including a NES

Table of contents

1 Introduction and context

2 Simplest mathematical model for helicopter ground resonance

3 Prediction of the steady-state regimes of the simplified model with NES

4 Conclusion and perspectives

Table of contents

1 Introduction and context

2 Simplest mathematical model for helicopter ground resonance
3 Prediction of the steady-state regimes of the simplified model with NES

4 Conclusion and perspectives

Ω : Angular rotor speed

Center of inertia
of the rotor
[Krysinski et Malburet, "Instabilité mécanique: contrôle actif et passif", chapitre 2, Lavoisier, 2009.]

Lagrange's equations
 \Downarrow

Reference model

Nonlinear system with 5 unknown variables:

- Displacement of the fuselage: y
- Lagging angles: $\delta_{1}, \delta_{2}, \delta_{3}$ et δ_{4}

Center of inertia
of the rotor
[Krysinski et Malburet, "Instabilité mécanique: contrôle actif et passif", chapitre 2, Lavoisier, 2009.]

Ω : Angular rotor speed

Center of inertia
of the rotor

Lagrange's equations

\Downarrow

Reference model

Nonlinear system with 5 unknown variables:

- Displacement of the fuselage: y
- Lagging angles: $\delta_{1}, \delta_{2}, \delta_{3}$ et δ_{4}

Linear system with 5 unknown variables, with time variable parameters ($2 \pi / \Omega$-periodic)
[Krysinski et Malburet, "Instabilité mécanique: contrôle actif et passif", chapitre 2, Lavoisier, 2009.]

Ω : Angular rotor speed

Center of inertia of the rotor

Lagrange's equations

\Downarrow

Reference model

Nonlinear system with 5 unknown variables:

- Displacement of the fuselage: y
- Lagging angles: $\delta_{1}, \delta_{2}, \delta_{3}$ et δ_{4}

Linear system with 5 unknown variables, with time variable parameters
($2 \pi / \Omega$-periodic)
\Downarrow

Coleman transformation

\Downarrow
Linear system with 3 unknown variables, with constant parameters
[Krysinski et Malburet, "Instabilité mécanique: contrôle actif et passif", chapitre 2, Lavoisier, 2009.]

Coleman Transformation:

Change of variable

$\underbrace{\left\{\delta_{1} ; \delta_{2} ; \delta_{3} ; \delta_{4}\right\}}_{\text {Lagging angles: individual motion of the blades }} \Longrightarrow \underbrace{\left\{\delta_{0} ; \delta_{1 c} ; \delta_{1 s} ; \delta_{c p}\right\}}_{\text {Coleman variables: collective motion of the blades }}$

Coleman Transformation:

Change of variable

$\underbrace{\left\{\delta_{1} ; \delta_{2} ; \delta_{3} ; \delta_{4}\right\}}_{\text {Lagging angles: individual motion of the blades }} \Longrightarrow \underbrace{\left\{\delta_{0} ; \delta_{1 c} ; \delta_{1 s} ; \delta_{c p}\right\}}_{\text {Coleman variables: collective motion }}$

Equation of motion of δ_{0} et $\delta_{c p}$ uncoupled
\square
Linear system with 3 unknown variables:

- Displacement of the fuselage: y;
- 2 Coleman variables: $\delta_{1 c}$ and $\delta_{1 s}$, with constant parameters

Coleman Transformation:

Change of variable

$\underbrace{\left\{\delta_{1} ; \delta_{2} ; \delta_{3} ; \delta_{4}\right\}}_{\text {Lagging angles: individual motion of the blades }} \Longrightarrow \underbrace{\left\{\delta_{0} ; \delta_{1 c} ; \delta_{1 s} ; \delta_{c p}\right\}}_{\text {Coleman variables: collective motion }}$

Equation of motion of δ_{0} et $\delta_{c p}$ uncoupled
\Downarrow
Linear system with 3 unknown variables:

- Displacement of the fuselage: y;
- 2 Coleman variables: $\delta_{1 c}$ and $\delta_{1 s}$, with constant parameters

Standard form of the system

$$
\dot{\mathbf{X}}=\mathbf{A}(\Omega) \mathbf{X}, \quad \text { with } \quad \mathbf{X}=\left\{y, \dot{y}, \delta_{1 c}, \dot{\delta}_{1 c}, \delta_{1 s}, \dot{\delta}_{1 s}\right\}
$$

Ω (rotor speed): bifurcation parameter

$$
\dot{\mathbf{X}}=\mathbf{A}(\Omega) \mathbf{X} \quad \Longrightarrow \quad \alpha \text { : eigenvalues of } \mathbf{A}(\Omega)
$$

ω_{y} : natural frequency of the fuselage
ω_{δ} : natural frequency of one blade

$\dot{\mathbf{X}}=\mathbf{A}(\Omega) \mathbf{X} \quad \Longrightarrow \quad \alpha$: eigenvalues of $\mathbf{A}(\Omega)$

Zoom 1: $\Omega \approx \omega_{\delta}-\omega_{y}$
Zoom 2: $\Omega \approx \omega_{\delta}+\omega_{y}$

$$
\dot{\mathbf{X}}=\mathbf{A}(\Omega) \mathbf{X} \quad \Longrightarrow \quad \alpha: \text { eigenvalues of } \mathbf{A}(\Omega)
$$

Zoom 1: $\Omega \approx \omega_{\delta}-\omega_{y}$

Zoom 2: $\Omega \approx \omega_{\delta}+\omega_{y}$

No interaction between the fuselage mode and the progressive rotor mode

Simplest model: how to ignore PROGRESSIVE rotor mode ?
Answer: use of "bi-normal" transformation
[Done, "A simplified approach to helicopter ground resonance", Aeronaut. J., 1974.]

Simplest model: how to ignore PROGRESSIVE rotor mode ?
Answer: use of "bi-normal" transformation
[Done, "A simplified approach to helicopter ground resonance", Aeronaut. J., 1974.]
"Bi-normal" transformation only for rotor coordinates (i.e. Coleman variables and their derivatives):

Change of variable

$\left\{q_{1}, q_{1}^{*}, q_{2}, q_{2}^{*}\right\} \in \mathbb{C}$
q_{1}, q_{1}^{*} : regressive rotor mode
q_{2}, q_{2}^{*} : progressive rotor mode IGNORED

Simplest model: how to ignore PROGRESSIVE rotor mode ?
Answer: use of "bi-normal" transformation
[Done, "A simplified approach to helicopter ground resonance", Aeronaut. J., 1974.]
"Bi-normal" transformation only for rotor coordinates (i.e. Coleman variables and their derivatives):

Change of variable

$\left\{q_{1}, q_{1}^{*}, q_{2}, q_{2}^{*}\right\} \in \mathbb{C}$
q_{1}, q_{1}^{*} : regressive rotor mode
q_{2}, q_{2}^{*} : progressive rotor mode IGNORED

Whole system: Fuselage + Rotor

$$
\dot{\mathbf{X}}=\mathbf{A X}
$$

$$
\text { with } \mathbf{X}=\left\{y, \dot{y}, \delta_{1 c}, \dot{\delta}_{1 c}, \delta_{1 s}, \dot{\delta}_{1 s}\right\}
$$

\Downarrow
Use of "bi-normal" coordinates

\Downarrow

Simplified system

$$
\begin{gathered}
\dot{\mathbf{Y}}=\mathbf{B Y} \\
\text { with } \mathbf{Y}=\left\{y, \dot{y}, q_{1}, q_{1}^{*}\right\}
\end{gathered}
$$

Table of contents

1 Introduction and context

2 Simplest mathematical model for helicopter ground resonance
3 Prediction of the steady-state regimes of the simplified model with NES

4 Conclusion and perspectives

"Ungrounded" NES on the fuselage

"Ungrounded" NES on the fuselage

"Ungrounded" NES on the fuselage

Simplified model without NES:

Linear

$$
\dot{\mathbf{Y}}=\mathbf{B Y}
$$

with $\mathbf{Y}=\left\{y, \dot{y}, q_{1}, q_{1}^{*}\right\}$

Use of barycentric coordinates:
$v=y+m_{h} h$
\Rightarrow
and
$w=y-h$

Simplified model with NES:

Nonlinear

$$
\dot{\mathbf{Z}}=\mathbf{f}_{\mathbf{Z}}(\mathbf{Z})
$$

with $\mathbf{Z}=\left\{v, \dot{v}, w, \dot{w}, q_{1}, q_{1}^{*}\right\}$

Identification of the steady-state regimes

Numerical simulation: Reference model vs. Simplified model with NES

\Rightarrow Goal of this work:
Prediction of the steady-state regimes of the Simplified model with NES
\Rightarrow Goal of this work:
Prediction of the steady-state regimes of the Simplified model with NES
\Rightarrow Assumptions:

- The mass of the NES is small with respect to the total mass of the fuselage and the blades: $\frac{m_{h}}{m_{y}+4 m_{\delta}}=\epsilon \ll 1$
- Most of the parameters are $O(\epsilon)$
- Initial conditions not too far from 0
\Rightarrow Goal of this work:
Prediction of the steady-state regimes of the Simplified model with NES
\Rightarrow Assumptions:
- The mass of the NES is small with respect to the total mass of the fuselage and the blades: $\frac{m_{h}}{m_{y}+4 m_{\delta}}=\epsilon \ll 1$
■ Most of the parameters are $O(\epsilon)$
- Initial conditions not too far from $\mathbf{0}$
\Rightarrow Parametric analysis :
- Rotor speed Ω through the parameter a defined as $\Omega=\omega_{y}+\omega_{\delta}+a \epsilon$, with $a \sim O(1)$
- Damping coefficient of one blade: $\lambda_{\delta}=\tilde{\lambda}_{\delta} / \epsilon$, with $\lambda_{\delta} \sim O(1)$

\Rightarrow Goal of this work:
Prediction of the steady-state regimes of the Simplified model with NES
\Rightarrow Assumptions:
- The mass of the NES is small with respect to the total mass of the fuselage and the blades:

$$
\frac{m_{h}}{m_{y}+4 m_{\delta}}=\epsilon \ll 1
$$

- Most of the parameters are $O(\epsilon)$
- Initial conditions not too far from $\mathbf{0}$
\Rightarrow Parametric analysis :
- Rotor speed Ω through the parameter a defined as $\Omega=\omega_{y}+\omega_{\delta}+a \epsilon$, with $a \sim O(1)$
- Damping coefficient of one blade: $\lambda_{\delta}=\tilde{\lambda}_{\delta} / \epsilon$, with $\lambda_{\delta} \sim O(1)$
\Rightarrow Presentation of the results :
Domain of existence of the steady-state regimes in a
 plane $\left\{a, \lambda_{\delta}\right\}$: we count 5 domains for 4 regimes

Domain 1: domain of existence "complete suppression"
\equiv domain of local stability of the trivial equilibrium (TE) position of the simplified model with NES $\dot{\mathbf{Z}}=\mathbf{f}_{\mathbf{Z}}(\mathbf{Z})$
\Rightarrow Eigenvalues of $\mathbf{J}_{\mathbf{f}_{\mathbf{Z}}}(\mathbf{0}) \beta_{i}(i=1, \ldots, 6)$
$\Rightarrow \beta\left(a, \lambda_{\delta}\right)$: eigenvalue of $\mathbf{J}_{\mathbf{f}}(\mathbf{0})$ which can satisfy $\operatorname{Re}\left[\beta\left(a, \lambda_{\delta}\right)\right]>0$

Domain 1: domain of existence "complete suppression"
\equiv domain of local stability of the trivial equilibrium (TE) position of the simplified model with NES $\dot{\mathbf{Z}}=\mathbf{f}_{\mathbf{Z}}(\mathbf{Z})$
\Rightarrow Eigenvalues of $\mathbf{J}_{\mathbf{f}_{\mathbf{Z}}}(\mathbf{0}) \beta_{i}(i=1, \ldots, 6)$
$\Rightarrow \beta\left(a, \lambda_{\delta}\right)$: eigenvalue of $\mathbf{J}_{\mathbf{f}}(\mathbf{0})$ which can satisfy $\operatorname{Re}\left[\beta\left(a, \lambda_{\delta}\right)\right]>0$

Domain 1 defined by $\lambda_{\delta, b}(a)$ solution of $\operatorname{Re}\left[\beta\left(a, \lambda_{\delta}(a)\right)\right]=0$

Domains of existence of PR, SMR and "No suppression":
\Rightarrow Complexification-Averaging Method
[Manevitch, "Complex Representation of Dynamics of Coupled Nonlinear Oscillators", 1999.]

- Change of variable:

$$
\phi_{1}=\left(\dot{v}+j \omega_{y} v\right) e^{-j \omega_{y} t} ; \quad \phi_{2}=\left(\dot{w}+j \omega_{y} w\right) e^{-j \omega_{y} t} ; \quad \phi_{3}=q_{1} e^{-j \omega_{y} t}
$$

- Averaging over one period of the frequency ω_{y} :

$$
\dot{\phi}=\mathbf{f}_{\phi}(\phi), \quad \text { with } \quad \phi=\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}
$$

Domains of existence of PR, SMR and "No suppression":

\Rightarrow Complexification-Averaging Method

[Manevitch, "Complex Representation of Dynamics of Coupled Nonlinear Oscillators", 1999.]

- Change of variable:

$$
\phi_{1}=\left(\dot{v}+j \omega_{y} v\right) e^{-j \omega_{y} t} ; \quad \phi_{2}=\left(\dot{w}+j \omega_{y} w\right) e^{-j \omega_{y} t} ; \quad \phi_{3}=q_{1} e^{-j \omega_{y} t}
$$

- Averaging over one period of the frequency ω_{y} :

$$
\dot{\phi}=\mathbf{f}_{\phi}(\phi), \quad \text { with } \quad \phi=\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}
$$

Real system

Complex system

$$
\dot{\phi}=\mathbf{f}_{\phi}(\phi)
$$

with $\phi=\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$

Polar coordinates.: $\phi_{i}(t)=N_{i}(t) e^{j \theta_{i}(t)}$

$$
\dot{\mathbf{U}}=\mathbf{f}_{\mathbf{U}}(\mathbf{U})
$$

$$
\text { with } \mathbf{U}=\left\{N_{1}, N_{2}, N_{3}, \Delta_{21}, \Delta_{31}\right\}
$$

$$
\Delta_{21}=\theta_{2}-\theta_{1}, \text { and } \Delta_{31}=\theta_{3}-\theta_{1}
$$

\Rightarrow Fixed points $\equiv \mathrm{PR}$ of $\dot{\mathbf{Z}}=\mathbf{f}_{\mathbf{Z}}(\mathbf{Z})$
\Rightarrow Oscillating solutions \equiv SMR of $\mathbf{Z}=\mathbf{f}_{\mathbf{Z}}(\mathbf{Z})$

Domains of existence of PR, SMR and "No suppression":

\Rightarrow Complexification-Averaging Method
[Manevitch, "Complex Representation of Dynamics of Coupled Nonlinear Oscillators", 1999.]

- Change of variable:

$$
\phi_{1}=\left(\dot{v}+j \omega_{y} v\right) e^{-j \omega_{y} t} ; \quad \phi_{2}=\left(\dot{w}+j \omega_{y} w\right) e^{-j \omega_{y} t} ; \quad \phi_{3}=q_{1} e^{-j \omega_{y} t}
$$

- Averaging over one period of the frequency ω_{y} :

$$
\dot{\phi}=\mathbf{f}_{\phi}(\phi), \quad \text { with } \quad \phi=\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}
$$

Real system

Complex system

$\dot{\phi}=\mathbf{f}_{\phi}(\phi)$
with $\phi=\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$
Polar coordinates.: $\phi_{i}(t)=N_{i}(t) e^{j \theta_{i}(t)}$

$$
\begin{array}{r}
\dot{\mathbf{U}}=\mathbf{f}_{\mathbf{U}}(\mathbf{U}) \\
\text { with } \mathbf{U}=\left\{N_{1}, N_{2}, N_{3}, \Delta_{21}, \Delta_{31}\right\}, \\
\Delta_{21}=\theta_{2}-\theta_{1}, \text { and } \Delta_{31}=\theta_{3}-\theta_{1} \\
\Rightarrow \text { Fixed points } \equiv \mathrm{PR} \text { of } \dot{\mathbf{Z}}=\mathbf{f}_{\mathbf{Z}}(\mathbf{Z}) \\
\Rightarrow \text { Oscillating solutions } \equiv \operatorname{SMR} \text { of } \dot{\mathbf{Z}}=\mathbf{f}_{\mathbf{Z}}(\mathbf{Z})
\end{array}
$$

- Studied using multi-scale approach since $\epsilon \ll 1$:
\rightarrow fast time: $t_{0}=t$
\rightarrow slow time: $t_{1}=\epsilon t$

ϵ^{0} orcler of the system

$$
\begin{aligned}
& \frac{\partial N_{1}}{\partial t_{0}}=\frac{\partial N_{3}}{\partial t_{0}}=\frac{\partial \Delta_{31}}{\partial t_{0}}=0 \\
& \left\{\begin{array}{l}
\frac{\partial N_{2}}{\partial t_{0}}=\frac{\omega_{y}}{2}\left(N_{1} \sin \Delta_{21}+N_{2} \operatorname{lm}\left[F\left(N_{2}\right)\right]\right) \\
\frac{\partial \Delta_{21}}{\partial t_{0}}=\frac{\omega_{y}}{2}\left(\frac{N_{1}}{N_{2}} \cos \Delta_{21}-\operatorname{Re}\left[F\left(N_{2}\right)\right]\right)
\end{array}\right.
\end{aligned}
$$

\Rightarrow Fixed points of the ϵ^{0} order system:

$$
\lim _{t_{0} \rightarrow \infty} \frac{\partial N_{2}}{\partial t_{0}}=0 \text { and } \lim _{t_{0} \rightarrow \infty} \frac{\partial \Delta_{21}}{\partial t_{0}}=0
$$

$\Rightarrow t_{0}$-invariant manifold $\left(t_{0}-\mathrm{IM}\right)$:

$$
\begin{gathered}
\phi_{1}\left(t_{1}\right)=\phi_{2}\left(t_{1}\right) F\left(\left|\phi_{2}\left(t_{1}\right)\right|\right) \\
\Downarrow \\
N_{1}^{2}=N_{2}^{2}\left|F\left(N_{2}\right)\right|^{2}=H\left(N_{2}\right) .
\end{gathered}
$$

Shape and stability of the $t_{0}-\mathrm{IM}$
\Rightarrow Explanation of the 3 steady-state regimes

Shape and stability of the $t_{0}-\mathrm{IM}$

\Rightarrow Explanation of the 3 steady-state regimes

ϵ^{1} order of the system in the limit $t_{0} \rightarrow \infty: \Phi_{1}\left(t_{1}\right)=\Phi_{2}\left(t_{1}\right) F\left(\left|\Phi_{2}\left(t_{1}\right)\right|\right)$
\Rightarrow Fixed points of ϵ^{1} order system

0,1 or $2 \equiv \underbrace{\text { fixed points of full order averaged syst. }}_{\dot{\mathbf{U}}=\mathbf{f}_{\mathbf{U}}(\mathbf{U})} \equiv \underbrace{\mathrm{PR} \text { for the Simplified model }}_{\dot{\mathbf{Z}}=\mathbf{f}_{\mathbf{Z}}(\mathbf{Z})}$
\Rightarrow Definition of the domains of existence of PR, SMR and "No suppression":

- Local stability of the fixed points
- Position of N_{2}^{e} with respect to $N_{2, M}, N_{2, m}, N_{2, d}, N_{2, u}$

Domain 2: PR

Definition: one of the fixed points is stable \& $N_{2}^{e}<N_{2, M}$

- stable fixed point
- unstable fixed point

Domain 2: PR

Definition: one of the fixed points is stable \& $N_{2}^{e}<N_{2, M}$

Domain 3: PR or SMR

Definition: one of the fixed points is stable \& $N_{2}^{e}>N_{2, m}$

- stable fixed point
- unstable fixed point

Domain 2: PR

Definition: one of the fixed points is stable \& $N_{2}^{e}<N_{2, M}$

Domain 3: PR or SMR

Definition: one of the fixed points is stable \& $N_{2}^{e}>N_{2, m}$

Domain 4: SMR

Definition:

$\rightarrow 1$ unstable fixed point
$\rightarrow 2$ unstable fixed points \& for the largest one: $N_{2}^{e}>N_{2, u}$

- stable fixed point
- unstable fixed point

Domain 2: PR

Definition: one of the fixed points is stable \& $N_{2}^{e}<N_{2, M}$

Domain 3: PR or SMR

Definition: one of the fixed points is stable \& $N_{2}^{e}>N_{2, m}$

Domain 4: SMR

Definition:

$\rightarrow 1$ unstable fixed point
$\rightarrow 2$ unstable fixed points \& for the largest one: $N_{2}^{e}>N_{2, u}$

Domain 5: "no suppression"

Definition:

\rightarrow No fixed points
$\rightarrow 2$ unstable fixed points \& for both of them:
$N_{2, M}<N_{2}^{e}<N_{2, u}$

- stable fixed point
- unstable fixed point

5 domains for 4 regimes:

Domain 1: Complete suppression Domain 2: PR Domain 3: PR or SMR
Domain 4: SMR
Domain 5: No suppression

Table of contents

1 Introduction and context

2 Simplest mathematical model for helicopter ground resonance

3 Prediction of the steady-state regimes of the simplified model with NES

4 Conclusion and perspectives

Conclusion

\Rightarrow Numerical/Analytical study of a simplified helicopter ground resonance model coupled to a NES

Conclusion

\Rightarrow Numerical/Analytical study of a simplified helicopter ground resonance model coupled to a NES
\Rightarrow Four steady-state response regimes:

- Complete suppression
- Partial suppression: PR
- Partial suppression: SMR
- No suppression

Conclusion

\Rightarrow Numerical/Analytical study of a simplified helicopter ground resonance model coupled to a NES
\Rightarrow Four steady-state response regimes:

- Complete suppression
- Partial suppression: PR
- Partial suppression: SMR
- No suppression
\Rightarrow Prediction of the domains of existence of the steady-state response regimes: 5 domains for 4 regimes

Conclusion

\Rightarrow Numerical/Analytical study of a simplified helicopter ground resonance model coupled to a NES
\Rightarrow Four steady-state response regimes:

- Complete suppression
- Partial suppression: PR
- Partial suppression: SMR

■ No suppression
\Rightarrow Prediction of the domains of existence of the steady-state response regimes: 5 domains for 4 regimes
\Rightarrow Analytical/Numerical study:
■ Influence of the others parameters (e.g. NES parameters)

- Assumptions compatible with industrial applications

Perspectives

\Rightarrow Present configuration: design of a NES

Perspectives

\Rightarrow Present configuration: design of a NES
\Rightarrow Investigation on other configurations:

Thank you for your attention

\Rightarrow Email: baptiste.bergeot@centrale-marseille.fr

Some references

Van Der Pol oscillator

[Lee et al., "Suppression of limit cycle oscillations in the Van der Pol oscillator by means of passive non-linear energy sinks", Struct. Control Health Monit., 2006.]
[Gendelman et Bar, "Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink", Physica D, 2010.]
[Damony et Gendelman, "Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink", J. Sound Vib., 2013.]

Flutter instabilities

[Lee et al., "Suppression Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers, Part 1: Theory", AIAA Journal, 2007.]
[Gendelman et al., "Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow", SIAM J Appl. Math., 2010.]

Harmonic forced linear system

[Starosvetsky and Gendelman, "Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry", Physica D, 2007.]
ϵ^{1} order of the system in the limit $t_{0} \rightarrow \infty: \Phi_{1}\left(t_{1}\right)=\Phi_{2}\left(t_{1}\right) F\left(\left|\Phi_{2}\left(t_{1}\right)\right|\right)$

$$
\left\{\begin{array}{l}
H^{\prime}\left(N_{2}\right) \frac{\partial N_{2}}{\partial t_{1}}=f_{N_{2}}\left(N_{2}, N_{3}, \Delta_{32}\right) \\
H^{\prime}\left(N_{2}\right) \frac{\partial \Delta_{32}}{\partial t_{1}}=f_{\Delta_{32}}\left(N_{2}, N_{3}, \Delta_{32}\right) \quad \text { with, } \quad \Delta_{32}=\Theta_{3}-\Theta_{2} \\
\frac{\partial N_{3}}{\partial t_{1}}=f_{N_{3}}\left(N_{2}, N_{3}, \Delta_{32}\right)
\end{array}\right.
$$

\Rightarrow Fixed points $\left\{N_{2}^{e}, N_{3}^{e}, \Delta_{32}^{e}\right\}$ of the ϵ^{1} order system: solution of $\left\{\begin{array}{l}f_{N_{2}}=0 \\ f_{\Delta_{32}}=0 \\ f_{N_{3}}=0\end{array}\right.$
0,1 or 2 fixed points:
$\left\{N_{2}^{e}, N_{3}^{e}, \Delta_{32}^{e}\right\} \equiv \underbrace{\text { fixed points of full order averaged syst. }}_{\dot{\mathbf{U}=\mathbf{f}_{\mathbf{U}}(\mathbf{U})}} \equiv \underbrace{P R \text { for the Simplified model }}_{\mathbf{Z}=\mathbf{f}_{\mathbf{Z}}(\mathbf{Z})}$
\Rightarrow Definition of the domains of existence of PR, SMR and "No suppression":

- Local stability of the fixed point $\left\{N_{2}^{e}, N_{3}^{e}, \Delta_{32}^{e}\right\}$
- Position of N_{2}^{e} with respect to $N_{2, M}, N_{2, m}, N_{2, d}, N_{2, u}$
- 4 domains for 3 regimes

4 domains for 3 regimes:

- Domain 2: PR
- Domain 3: PR or SMR
- Domain 4: SMR
- Domain 5: No suppression

4 domains for 3 regimes:

- Domain 2: PR
- Domain 3: PR or SMR
- Domain 4: SMR
- Domain 5: No suppression

ϵ^{1} Order Average Model:

$$
\left\{\begin{array}{l}
H^{\prime}\left(N_{2}\right) \frac{\partial N_{2}}{\partial t_{1}}=f_{N_{2}}\left(N_{2}, N_{3}, \Delta_{32}\right) \\
H^{\prime}\left(N_{2}\right) \frac{\partial \Delta_{32}}{\partial t_{1}}=f_{\Delta_{32}}\left(N_{2}, N_{3}, \Delta_{32}\right) \\
\frac{\partial N_{3}}{\partial t_{1}}=f_{N_{3}}\left(N_{2}, N_{3}, \Delta_{32}\right)
\end{array}\right.
$$

Simplified Model With NES:

$$
\dot{\mathbf{Z}}=\mathbf{f}_{\mathbf{Z}}(\mathbf{Z}, \Omega)
$$

with $\mathbf{Z}=\left\{v, \dot{v}, w, \dot{w}, q_{1}, q_{1}^{*}\right\}$

Domain 2: domain of existence "partial suppression through PR"
Definition: one of the fixed points is stable \& $N_{2}^{e}<N_{2, M}$

Domain 2: domain of existence "partial suppression through PR"
Definition: one of the fixed points is stable \& $N_{2}^{e}<N_{2, M}$

Example 1

$-N_{1}$
_ $N_{2} \quad$ (Full Order Averaged Model)
$-N_{2}$

- Stable fixed point
- Untable fixed point (ϵ^{1} Order Averaged Model)
__ Full Order Average Model

Domain 2: domain of existence "partial suppression through PR"
Definition: one of the fixed points is stable \& $N_{2}^{e}<N_{2, M}$

Example 1

Domain 2: domain of existence "partial suppression through PR"
Definition: one of the fixed points is stable \& $N_{2}^{e}<N_{2, M}$

Example 1

_ Simplified model with NES

- - . Full-order averaged model

Domain 3: domain of existence "partial suppression through PR or SMR"
Definition: one of the fixed points is stable \& $N_{2}^{e}>N_{2, m}$

Domain 3: domain of existence "partial suppression through PR or SMR"
Definition: one of the fixed points is stable \& $N_{2}^{e}>N_{2, m}$

Example 2a: sustained PR

Domain 3: domain of existence "partial suppression through PR or SMR"
Definition: one of the fixed points is stable \& $N_{2}^{e}>N_{2, m}$

Example 2a: sustained PR

_- Simplified model with NES

- - - Full-order averaged model

Domain 3: domain of existence "partial suppression through PR or SMR" Definition: one of the fixed points is stable \& $N_{2}^{e}>N_{2, m}$

Example 2a: sustained SMR

Domain 3: domain of existence "partial suppression through PR or SMR"
Definition: one of the fixed points is stable \& $N_{2}^{e}>N_{2, m}$

Example 2a: sustained SMR

__ Simplified model with NES

- - - Full-order averaged model

Domain 4: domain of existence "partial suppression through SMR"

Definition:

$\rightarrow 1$ unstable fixed point (example 3)
$\rightarrow 2$ unstable fixed points \& for the largest one $N_{2}^{e}>N_{2, u}$

Domain 4: domain of existence "partial suppression through SMR"

Definition:

$\rightarrow 1$ unstable fixed point (example 3)
$\rightarrow 2$ unstable fixed points \& for the largest one $N_{2}^{e}>N_{2, u}$

Example 3

$$
N_{2}=N_{2, M} \quad N_{2}=N_{2, m}
$$

Phase portrait (ϵ^{1} Order Average Model)
Full Order Average Model

Domain 4: domain of existence "partial suppression through SMR"

Definition:

$\rightarrow 1$ unstable fixed point (example 3)
$\rightarrow 2$ unstable fixed points \& for the largest one $N_{2}^{e}>N_{2, u}$

Example 3

__ Simplified model with NES

- - . Full-order averaged model

Domain 5: domain of existence "no suppression"

Definition:

\rightarrow No fixed points (example 4)
$\rightarrow 2$ unstable fixed points \& for both of them $N_{2, M}<N_{2}^{e}<N_{2, u}$

Domain 5: domain of existence "no suppression"

Definition:

\rightarrow No fixed points (example 4)
$\rightarrow 2$ unstable fixed points \& for both of them $N_{2, M}<N_{2}^{e}<N_{2, u}$

Example 4

Domain 5: domain of existence "no suppression"

Definition:

\rightarrow No fixed points (example 4)
$\rightarrow 2$ unstable fixed points \& for both of them $N_{2, M}<N_{2}^{e}<N_{2, u}$

Example 4

__ Simplified model with NES

- - - Full-order averaged model

